Paper 1
 Calculator not allowed

First name

\qquad

Last name \qquad

School \qquad

Mathematics test

Instructions

Answers

This means write down your answer or show your working and write down your answer.

Calculators

You must not use a calculator to answer any question in this test.

Formulae

You might need to use these formulae

Trapezium

Area $=\frac{1}{2}(a+b) h$

Prism

area of cross-section

Volume $=$ area of cross-section \times length

1. The table shows the approximate populations of five different places.

Place	Approximate population
London	7000000
Sheffield	700000
Harrogate	70000
Ash Vale	7000
Binbrook	700

(a) Which of the places has a population of about seventy thousand?
(b) Use the table to complete these sentences.

The population of Harrogate is about $\mathbf{1 0}$ times as big as
the population of \qquad

The population of \qquad is about $\mathbf{1 0 0}$ times as big as the population of Harrogate.

The population of Sheffield is about \qquad times as big as the population of Ash Vale.
2. Here are the rules for a number grid.

Use the rules to write the missing numbers in these number grids.

3. The lengths of babies are measured at different ages.

The graph shows the longest and shortest a baby boy is likely to be.

(a) Write the missing numbers below.

A baby boy is 8 weeks old.

The longest he is likely to be is about \qquad cm .

The shortest he is likely to be is about \qquad cm.
(b) A 34 week old baby boy is 72 cm long.

Put a cross on the graph to show this information.
\square
4. Here are six number cards.
240410
(a) Choose two of these six cards to make a fraction that is equivalent to $\frac{1}{3}$

(b) Choose two of these six cards to make a fraction that is greater than $\frac{1}{2}$ but less than 1

5. The shape below is a regular pentagon.

All five sides are exactly the same length.

Measure accurately one of the sides, then work out the perimeter of the pentagon.
6. (a) A three-digit number is a multiple of 4

What could the number be?
Give an example.

Now give a different example.
(b) A two-digit number is a factor of 100

What could the number be?
Give an example.
\qquad

Now give a different example.
7. (a) Write the answer to this calculation.

(b) Now write a number in each box to make this calculation correct.

The three numbers must be the same.

8. Sam says:

The only four-sided shape with four right angles is a square.

Is Sam correct?

\square No

Explain your answer.
9. (a) When $\boldsymbol{x}=8$, what is the value of $5 \boldsymbol{x}$?

Tick (\checkmark) the correct box below.
® $\square 5$ \square
$\square 58$
\square None of these
1 mark
(b) When $x=8$, what is the value of $3 x-x$?

Tick (\checkmark) the correct box below.

(c) When $x=8$, what is the value of x^{2} ?

Tick (\checkmark) the correct box below.

- $\square 8 \quad \square 10 \quad \square 16 \quad \square 64 \quad \square$ None of these $\quad \frac{\square}{1 \text { mark }}$

10. Lisa uses a grid to multiply 23 by $\mathbf{1 5}$

\times	20	3
$\mathbf{1 0}$	200	30
$\mathbf{5}$	100	15

$$
200+100+30+15=345
$$

Answer: 345

Now Lisa multiplies two different numbers.
Complete the grid, then give the answer below.

\times		40	3
30	-	-	-
	600	-	18

Answer: \qquad
\square
11. Fred has a bag of sweets.

Contents

3 yellow sweets
5 green sweets
7 red sweets
4 purple sweets
1 black sweet

He is going to take a sweet from the bag at random.
(a) What is the probability that Fred will get a black sweet?
(b) Write the missing colour in the sentence below.

The probability that Fred will get a \qquad sweet is $\frac{1}{4}$
12. Write a number in each box to make the calculations correct.

13. A rectangle has an area of $24 \mathrm{~cm}^{2}$

How long could the sides of the rectangle be?
Give three different examples.

\qquad cm and
cm
\qquad cm and \qquad cm
14. (a) Write the missing numbers.
50% of $80=$ \qquad
5% of $80=$ \qquad
1% of $80=$ \qquad
(b) Work out 56% of 80

You can use part (a) to help you.
15. Look at this equation.

$$
y=2 x+10
$$

(a) When $\boldsymbol{x}=4$, what is the value of y ?
\qquad
(b) When $\boldsymbol{x}=\mathbf{- 4}$, what is the value of y ?

\qquad
1 mark
(c) Which equation below gives the same value of y for both $x=4$ and $x=-4$? Put a ring round the correct equation.

$$
y=2 x \quad y=2+x \quad y=x^{2} \quad y=\frac{x}{2}
$$

16. The diagram shows four different sized barrels.

Barrel A			
holds			
54 gallons	Barrel B holds 36 gallons	Barrel C holds 18 gallons	Barrel D holds 9 gallons

Write the missing fractions as simply as possible.
The first one is done for you.

Barrel \mathbf{C} holds $\quad \frac{1}{2}$ of the amount barrel \mathbf{B} holds.

Barrel D holds \qquad of the amount barrel \mathbf{B} holds.

Barrel C holds \qquad of the amount barrel \mathbf{A} holds.

Barrel B holds of the amount barrel \mathbf{A} holds.
17. The line on the graph below represents a speed of $60 \mathrm{~km} / \mathrm{hour}$.

(a) Draw a line on the graph to represent a speed of $\mathbf{3 0} \mathbf{k m} /$ hour.

Label the line by writing $30 \mathrm{~km} /$ hour.
(b) Now draw a line on the graph to represent a speed of $120 \mathrm{~km} / \mathrm{hour}$.

Label the line by writing $120 \mathrm{~km} / \mathrm{hour}$.
18. (a) In this design, the ratio of grey to black is $\mathbf{3}: \mathbf{1}$

What percentage of the design is black? © $\%$
(b) In this design, 60\% is grey and the rest is black.

What is the ratio of grey to black?
Write your ratio in its simplest form.
\qquad
\qquad
19. In a bag there are only red, blue and green counters.
(a) I am going to take a counter out of the bag at random.

Complete the table below.

Colour of counters	Number of counters	Probability
Red	6	
Blue		$\frac{1}{5}$
Green	6	

2 marks
(b) Before I take a counter out of the bag, I put one extra blue counter into the bag. What effect does this have on the probability that I will take a red counter? Tick (\checkmark) the correct box.

The probability has increased.
\square The probability has decreased.
\square The probability has stayed the same.
\square It is impossible to tell.
20. The diagram shows three straight lines.

Work out the sizes of angles a, b and c
Give reasons for your answers.

$a=$ \qquad - because
21. (a) Some of the fractions below are smaller than $\frac{1}{9}$ Tick (\checkmark) them.
$\square \frac{1}{10}$

(b) To the nearest per cent, what is $\frac{1}{9}$ as a percentage?

Tick (\checkmark) the correct percentage.

(c) Complete the sentence below by writing a fraction.

- $\frac{1}{9}$ is half of \qquad

22. Solve this equation.

$$
2(2 n+5)=12
$$

$$
n=
$$

\qquad
23. Kevin is working out the area of a circle with radius 4 He writes:

Explain why Kevin's working is wrong.
24. Write the missing numbers in these fraction sums.

1 mark

1 mark
25. Look at the cube.

The area of a face of the cube is $9 \boldsymbol{x}^{2}$

Write an expression for the total surface area of the cube.
Write your answer as simply as possible.
\qquad
1 mark

END OF TEST

